
© 2019 EnterpriseDB Corporation. All rights reserved. 1

Tuple Locking redesigned
Kuntal Ghosh

(Senior Software Engineer)

PGCon 2019
31.05.2019

© 2019 EnterpriseDB Corporation. All rights reserved. 2

● At EnterpriseDB, we are working on a new storage format
called ‘ZHeap’, which will provide better control over bloat.

● In ZHeap, whenever possible, we handle an UPDATE by
moving the old row version to an undo log, and putting the
new row version in the place previously occupied by the
old one.

● The ability to lock a tuple is an important feature of any
database storage engine (for concurrency).

● How we have implemented tuple locking in ZHeap.
(Secret - We’ve not used Multixact machinery)

© 2019 EnterpriseDB Corporation. All rights reserved. 3

What is Tuple Locking?

© 2019 EnterpriseDB Corporation. All rights reserved. 4

● Tuple locking is needed to ensure that no two transaction
can update the same tuple at the same time.

● This guarantee must persist till the end of the transactions.
● Different tuple locking modes in PG

○ FOR UPDATE
○ FOR NO KEY UPDATE
○ FOR SHARE
○ FOR KEY SHARE

© 2019 EnterpriseDB Corporation. All rights reserved. 5

https://www.postgresql.org/docs/11/explicit-locking.html

https://www.postgresql.org/docs/11/explicit-locking.html

© 2019 EnterpriseDB Corporation. All rights reserved. 6

How does tuple locking work in heap?

© 2019 EnterpriseDB Corporation. All rights reserved. 7

● If we want to lock a newly inserted tuple, we can store the
locking information on the tuple and set xmax as our
transaction.

● But, what will happen if there are more lockers?
● We certainly can’t store them in the tuple.

○ Lack of space

https://www.pgcon.org/2012/schedule/attachments/246_Improving%20Foreign%20Key%20Concurrency.slides.pdf

https://www.pgcon.org/2012/schedule/attachments/246_Improving%20Foreign%20Key%20Concurrency.slides.pdf

© 2019 EnterpriseDB Corporation. All rights reserved. 8

● We create an array of locking Xids along with their lock
mode and we associate the array entry with an uint4 key -
called MultiXactId.

● We set the tuple xmax as the MultiXactId.
● We also mark the infomask to indicate that the xmax is a

MultiXactId.

https://www.pgcon.org/2012/schedule/attachments/246_Improving%20Foreign%20Key%20Concurrency.slides.pdf

https://www.pgcon.org/2012/schedule/attachments/246_Improving%20Foreign%20Key%20Concurrency.slides.pdf

© 2019 EnterpriseDB Corporation. All rights reserved. 9

● If xmax is invalid
○ Grab the lock, set xmax as locker’s xid

● If xmax is valid
○ If it conflicts with current lockmode

■ Grab the lockers list and sleep on it. Restart the process when you’re awaken
○ Else, note the locker. And,

■ if a single xact, create a multixact with the two, set it as the xmax
■ if a multixact, expand it by adding yourself, create a new multixact entry and set it as the

xmax

https://www.pgcon.org/2012/schedule/attachments/246_Improving%20Foreign%20Key%20Concurrency.slides.pdf

https://www.pgcon.org/2012/schedule/attachments/246_Improving%20Foreign%20Key%20Concurrency.slides.pdf

© 2019 EnterpriseDB Corporation. All rights reserved. 10

How to follow the update chain
● When locking a tuple, we’ve to lock the future versions of

the tuple.
● Failing to lock the updated row would allow a future

transaction to delete the updated row when the locking
transaction is still running.

● Needs a separate WAL record.
● This step is required in EvalPlanQual path as well.

https://www.pgcon.org/2012/schedule/attachments/246_Improving%20Foreign%20Key%20Concurrency.slides.pdf

https://www.pgcon.org/2012/schedule/attachments/246_Improving%20Foreign%20Key%20Concurrency.slides.pdf

© 2019 EnterpriseDB Corporation. All rights reserved. 11

● Each new locker on a tuple combines the existing lockers
along with itself and creates a new MultiXact entry.

● The 32 bit counter MultiXact Id is maintained for each
MultiXact entry which requires efficient aging management,
storage cleanup, and wraparound handling.

● Since any update in heap is non-inplace update, we’ve to
follow the update chain and lock future versions.

● Whenever a new multixact entry is created, a new WAL
record is inserted.

● MultiXact may trigger full-table vacuum.
● And the list goes on

© 2019 EnterpriseDB Corporation. All rights reserved. 12

ZHeap page and tuple format

© 2019 EnterpriseDB Corporation. All rights reserved. 13

● Each ZHeap page has fixed set of transaction slots
containing transaction info (64-bit transaction id and the
latest undo record pointer of that transaction).

● Each transaction slot occupies 16 bytes.
● As of now, the number of slots are configurable and default

value of same is four.
● We allow the transaction slots to be reused after the

transaction becomes too old to matter (older than oldest
xid having undo), committed or rolled back. This allows us
to operate without having too many slots.

© 2019 EnterpriseDB Corporation. All rights reserved. 14

Page Header Item Item Item

 Slot Slot Slot SlotTuple

TupleTuple

Transaction Slots TPD entry location

© 2019 EnterpriseDB Corporation. All rights reserved. 15

Xmin – inserting transaction id

Xmax – deleting transaction id
t_cid – inserting or deleting

command id, or both

t_ctid – tuple id (page/item)
infomask2 – number of attrs

and flags

infomask – tuple flags
hoff – length of tuple header

incl. bitmaps
bits – bitmap representing

NULLs

infomask2 – number of attrs
and transaction slot id

infomask – tuple flags

hoff – length of tuple header
incl. bitmaps

bits – bitmap representing
NULLs

Tuple Header

Tuple Header

 heap Tuple

 ZHeap Tuple

Attributes

…..
Attributes

…..

© 2019 EnterpriseDB Corporation. All rights reserved. 16

● TPD is nothing but temporary data page consisting of
extended transaction slots from zheap pages.

● Why we need TPD?
○ In the ZHeap page we have fixed number of transaction slots which can

lead to deadlock.
○ To support cases where a large number of transactions acquire SHARE or

KEY SHARE locks on a single page.
● The TPD overflow pages will be stored in the ZHeap itself,

interleaved with regular pages.
● The idea of putting TPD in zheap was of Andres Freund

© 2019 EnterpriseDB Corporation. All rights reserved. 17

page header

specialTPD entry
TPD entry

Header

offset -> slot Transaction slots
Tuple headers normally point to the transaction slot responsible for the last
modification, but since there aren't enough bits available to do this in the case where
a TPD is used, an offset -> slot mapping is stored in the TPD entry itself.

TPD Entry

Itemid Itemid

© 2019 EnterpriseDB Corporation. All rights reserved. 18

● UNDO data needs to be retained till the active transactions
need to see old versions
○ All transactions which are in-progress
○ For aborted transactions till the time UNDO actions have been performed
○ For committed transactions till the time they are all-visible

● We could reduce the time period for which UNDO needs to
be retained in category 3 by implementing “snapshot too
old”.

● We consider undo for a transaction to be discardable once
its XID is smaller than oldestXmin.

© 2019 EnterpriseDB Corporation. All rights reserved. 19

How does tuple locking work in ZHeap?

© 2019 EnterpriseDB Corporation. All rights reserved. 20

If we want to lock a newly inserted tuple,
● store lock mode and lock-only flag in the tuple infomask
● insert an undo record which mainly includes

○ locking information
○ transaction information for the tuple

● store the 64-bit xid and the undo record pointer in a
transaction slot

● We don’t set the transaction slot of the tuple to the locker’s
transaction slot.
○ We always keep the slot of the latest xid that has inserted/updated/deleted

the tuple.

© 2019 EnterpriseDB Corporation. All rights reserved. 21

..Tuple data..

Tuple Header

1

500
Undo pointer

500 - TransactionId that inserted
the tuple

TPD Slots

© 2019 EnterpriseDB Corporation. All rights reserved. 22

.. Tuple data ..

Tuple Header

1

500
Undo pointer

500 - TransactionId that inserted
the tuple

501 - TransactionId that locked
the tuple in key-share mode

KS - Key Share lock mode
LO - Lock Only flag

501
Undo pointer

LO, KS

TPD Slots

© 2019 EnterpriseDB Corporation. All rights reserved. 23

If the tuple is modified,
● If the lock-mode doesn’t conflict with current lock mode,

grab the lock as before. In this case, we store the highest
lock mode on the tuple.

● Else, make a list of xids that has locked the tuple in
conflicting lock modes

xid_list = {};
for each slot in the page including TPD entry (if any)
do

if (slot->xid is in progress)
Visit its undo chain and check if it has locked the tuple in a conflicting lock-mode;
if yes add xid to xid_list; endif

endif
done

© 2019 EnterpriseDB Corporation. All rights reserved. 24

If the tuple is modified,
● If the lock-mode doesn’t conflict with current lock-mode,

grab the lock as before. In this case, we store the highest
lock mode on the tuple.

● Else, make a list of xids that has locked the tuple in
conflicting lock modes
○ If the list is not empty, sleep on it. Restart the process when you’re

awaken
○ If the list is empty, go ahead and grab the lock. In this case, we store the

current lock mode on the tuple.

© 2019 EnterpriseDB Corporation. All rights reserved. 25

Follow the update chain
● If the tuple is in-place updated, don’t have to follow the

update chain. Since, we find the conflicting xids from undo
using ctid, we can fetch lockers of all the versions from
undo.
○ Most favourable case
○ Reduce write amplifications

● If the tuple is non-in-place updated, we’ve to lock all future
versions as well.

● This step is required in EvalPlanQual path as well.

© 2019 EnterpriseDB Corporation. All rights reserved. 26

● No need to retrieve the lockers from undo for the cases
that wouldn’t block.

● Otherwise, we’ve to traverse undo chains to collect lockers.
● We’ve kept a multi-locker flag on the tuple to indicate

whether the tuple has a single locker or multiple lockers.
● For single locker case, as soon as we get the locker, no

need to process other undo chains.

© 2019 EnterpriseDB Corporation. All rights reserved. 27

● If the tuple has only one locker
○ We clear the transaction slot corresponding to the aborted transaction.
○ We reset the lock mode on the tuple.
○ We keep the previous inserter’s/updater’s slot as it is. Because, while

locking a tuple we don’t modify the existing the transaction slot on the
tuple.

● If the tuple has multiple lockers
○ We clear the transaction slot corresponding to the aborted transaction.
○ We don’t apply any rollback operations on the tuple.
○ We keep the previous inserter’s/updater’s slot as it is.
○ For any subsequent operation that wants to lock the tuple, only keeps the

lock modes of in-progress transactions.

© 2019 EnterpriseDB Corporation. All rights reserved. 28

● To lock a tuple, we emit a single WAL record with enough
information so that we can form the undo record from the
same during recovery.

● We also need to emit a WAL record while applying the
rollback actions.

© 2019 EnterpriseDB Corporation. All rights reserved. 29

● Removed the requirement of 32-bit MultiXactId
○ No MultiXact wraparound issues

● Undo records corresponding to all-visible lockers are
discarded by the discard worker.
○ No access needed on ZHeap pages

● For each new locker, one undo record is inserted
containing current lock mode only.
○ In heap, we combine previous lockers and lock modes in the newly

created pg_multixact entry.
● Other advantages of not using MultiXact system

© 2019 EnterpriseDB Corporation. All rights reserved. 30

Performance
● Hardware

○ 128 cores 2.13 GHz GenuineIntel processors with 500GB RAM
● Test

○ Pgbench with scale factor 1000
○ Two scripts with 0.5 weight in each for 15 minutes

■ Script 1: UPDATE pgbench_accounts WHERE aid = :aid;
■ Script 2: SELECT FROM pgbench_accounts WHERE aid = :aid FOR KEY SHARE;

● Results
○ Heap - 71531
○ ZHeap (with 16 slots) - 70667

© 2019 EnterpriseDB Corporation. All rights reserved. 31

Scope of improvements
● While locking a tuple in exclusive mode, we can store the

transaction slot on the tuple. In that case, we don’t have to
traverse all the undo chains in a page to get the locker.

● We write undo records for locking each tuple. So, for the
statements like select * from foo for share generates an undo
record for each tuple.

● While collecting conflicting lockers, we need to traverse the
undo chains of all in-progress transactions.

© 2019 EnterpriseDB Corporation. All rights reserved. 32

● Amit Kapila (development lead)
● Dilip Kumar
● Kuntal Ghosh

A special thanks to Robert Haas, Andres Freund and

Thomas Munro who have provided a lot of valuable design

inputs.

© 2019 EnterpriseDB Corporation. All rights reserved. 33

Questions?

© 2019 EnterpriseDB Corporation. All rights reserved. 34

Thanks!
https://github.com/EnterpriseDB/zheap

